

Exploring the Extreme Universe



#### Fermi-LAT Observations of Galactic Transients

Elizabeth Hays (NASA/GSFC) on behalf of the Fermi-LAT Collaboration

## Fermi LAT Collaboration

#### + France

- IN2P3, CEA/Saclay
- 🕈 Italy
  - INFN, ASI, INAF

#### - Japan

- Hiroshima University
- ISAS/JAXA
- RIKEN
- Tokyo Institute of Technology

#### 🕂 Sweden

- Royal Institute of Technology (KTH)
- Stockholm University

#### United States

- Stanford University (SLAC and HEPL/Physics)
- University of California at Santa Cruz Santa Cruz Institute for Particle Physics
- Goddard Space Flight Center
- Naval Research Laboratory
- Sonoma State University
- Ohio State University
- University of Washington

#### November 30, 2010

#### Principal Investigator: Peter Michelson (Stanford University)

~390 Scientific Members (including 96 Affiliated Scientists, plus 68 Postdocs and 105 Students)

#### Managed at SLAC

# The Fermi Observatory

Large Area Telescope (LAT)

+ Large field of view (>2.4 sr)

Entire sky
every 3 hrs
(every 2 orbits)

◆ Broad energy range (20 MeV ->300 GeV)



Gamma-ray Burst Monitor (GBM)

Views entire unocculted sky

• • **NaI:** 8 keV -1 MeV

◆ BGO: 150 keV
 - 40 MeV

# Large Area Telescope (LAT)

ACD scintillator 89 tiles

#### Tracker

Si strip detectors Tungsten foil converters pitch = 228 um 8.8x10<sup>5</sup> channels 18 planes

#### Calorimeter -

CsI crystals hodoscopic array 6.1x10<sup>3</sup> channels 8 layers Large Field of View >2.4 sr Broad Energy Range 20 MeV - >300 GeV



4x4 detector array

November 30, 2010

# LAT Sensitivity with Time

Transient Science: Flares, bursts, multiwavelength campaigns, unidentified transients Accumulated Science: New source types, populations, longterm monitoring, spatially extended and diffuse studies Deepest and most uniform survey of the sky at these energies

All-sky in ~3 hrs (2 orbits)

Minor asymmetry due to passages through South Atlantic Anomaly









Credit: Fermi Large Area Telescope Collaboration

November 30, 2010

Based on 11 months of data



# LAT Automated Science Processing

All-sky search runs every 6 hours, 1 day, 1 week



LAT counts map E>100 MeV, 6 hours

LAT flare advocates monitor data daily and trigger multiwavelength follow-up. Also check for interesting transients reported in other wavebands.

- >100 Astronomer's Telegrams
- Public lightcurves through FSSC at http://fermi.gsfc.nasa.gov/ssc
- Weekly and Special Reports http://fermisky.blogspot.com November 30, 2010

#### Flaring Galactic Sources in the LAT

Search for new transients near the Galactic plane
Cygnus X-3
Nova of V407 Cygni
Crab Nebula



Unassociated transients from daily search
 <u>Low latitude blazars from</u> First LAT Catalog

November 30, 2010

#### Counterpart Search - Fermi J0910-5041



**Fermi J0910-5041** (ATEL #1788)

- October 15, 2008
- ~10x above average gamma-ray flux for 2 days
- Swift XRT ToO within 1 day
- -1 of 2 high confidence LAT transients without a firm counterpart

LAT 95% error circle contains Swift XRT source (Landi et al. ATEL #1822) coincident with flat-spectrum radio source from SUMMS and AT20G (Sadler ATEL #1843)



## Gamma-ray Flares and Modulation



- + LAT active periods correspond to soft X-ray state
- + Gamma rays modulated at 4.8 hour binary period
- + LAT detected a third flare from 2010 May 19-26 during transition to the soft state (Corbel et al. ATEL #2646)



### Connection to Jet Activity

- LAT active periods correspond to radio flares
  - Possible radio lag is not well constrained by correlation analysis
- Expect high energy electrons somewhere along the jet to scatter the stellar radiation field (UV) via inverse Compton
  - Superior conjunction favored for gamma-ray production



# Germa Probing the Jet

- Gamma ray origin away from accretion disk to avoid absorption on soft X-rays
- Modulation provides test of jet inclination

+ Also sensitive to jet precession



Model fits require inclined jet and prefer site slightly outside orbital separation



Dubus, Cerutti, and Henri, MNRAS, 404, L55 (2010)

### A Binary Transient in the LAT Future?

- First periastron passage of PSR B1259-63 since Fermi launch
  - Superior
     conjunction Dec. 7
  - Closest approach on Dec. 14
- Multiwavelength campaign Nov. - Feb.
- LAT contact: aous.abdo at nrl.navy.mil
- Actively monitored by team - stay tuned!



No significant emission in LAT data yet Abdo et al. ATEL #3054

# Gamma Rays Concurrent with a Nova

- Fermi J2102+4542:
   First detection of a nova in gamma rays
- 6-8σ in automated processing on 2010 March 13, 14 (Cheung et al. ATEL #2487)
- LAT position within 3.7'
   of V407 Cygni (white dwarf, red giant binary)
- Further analysis shows gamma rays close in time to nova discovery on March 10 by Nishiyama and Kabashima





# Nova Lightcurves



1) Optical peaks first

2) Gamma rays peak at 3-4 days and last ~2 weeks

3) X-rays peak at ~30 days, last and longest

Relative timing can be understood from the system geometry

November 30, 2010

#### Gamma-ray Space Telescope

# <sup>mi</sup> V407 Cygni System



Uncommon symbiotic binary - accretion fed by stellar wind

Nova shell provides means to accelerate electrons and ions.

RG atmosphere and wind provide asymmetric distribution of radiation and material for gamma-ray production processes.

### Gamma-ray and X-ray Evolution



Sedov condition is reached in a few days toward the red giant

Gamma rays peak early when efficiency for pion and inverse-Compton processes is favorable

X-rays peak later, increasing with volume of shock-heated gas

S. Razzaque

Shell expansion is nonuniform in space

### **Emission Mechanisms**

Spectral curvature does not evolve significantly

- + Energetics
  - Kinetic energy of the shell: ~10<sup>44</sup> erg
  - + Total energy in γ-rays:
     ~4x10<sup>41</sup> erg
  - This means 0.4%
     efficiency for leptonic
     scenarios
  - Or 9% for hadronic (similar to Fermi SNR)











#### **Pulsar** 100 MeV to 20 GeV





Hyper-exponential cutoff excluded at ~5 sigma

Consistent with emission well above the neutron star surface



Two components: Synchrotron + Inverse Compton extending to TeV. Fit consistent with mean nebula B field of 100 to 200  $\mu$ G

#### Our candle is not so standard

#### + Crab flickers in hard X-ray

- Fermi GBM reports hard X-ray variability on ~yearly time scales. Confirmed by multiple instruments (C. A. Wilson-Hodge et al. arXiv:1010.2679v1)
- + Crab flares at high energy (>100 MeV)
  - + AGILE reports enhanced Crab flux over a few days, Sept. 19-21 (M. Tavani et al. ATEL #2855)
  - Fermi LAT confirms flare and triggers LAT ToO (R. Buehler et al. ATEL #2681)
    - + Earlier flare found using new offline all-sky variability search developed by R. Buehler
  - Fermi LAT reports end of flare. Variability present in off-pulse phase of pulsar (E. Hays et al. ATEL #2893)

### " Two Short Flares from the Nebula



No variability found in pulsar or high energy LAT component

4 week intervals Sun passages excluded

4 day intervals covering flare periods

arXiv:1011.3855v2 E. Hays



## Origin of the Gamma-ray Flares?

- ✤ Gamma-ray luminosity is a small fraction of the pulsar power (10<sup>35</sup> erg/s -> ~10<sup>-3</sup> L<sub>rot</sub>)
- + 4 day duration implies small region size, diameter < 1.4 x 10<sup>2</sup> pc (1.5 arcsec)
- Electron synchrotron cooling time in 200 uG
   < ~15 days</li>
- LAT low energy spectral form + short timescale variability support a synchrotron interpretation
   Implies electrons accelerated to >PeV in structures in the inner region near the termination shock and base of the jet

# Searching for the Emission Region



No corresponding variability found in radio, optical, infrared, soft and hard X-rays at time or shortly after the 2nd LAT flare

November 30, 2010



LAT all-sky monitoring is producing spectacular results for the GeV transient sky

- + New blazars and unidentified transients
- Probing the jet of the Cygnus X-3 microquasar
- Discovery of gamma rays from V407 Cygni nova
- Fast high-energy gamma-ray flares from the Crab
- + All-sky monitoring continues. What's next?

http://fermi.gsfc.nasa.gov