X-ray bursts and superbursts

Jean in 't Zand (SRON)

Plea for neutron stars..

e.g., IGR J17473-2721 in 2008 (Chenevez et al., MNRAS, 2010)

2

The X-ray burst phenomenon is omnipresent !

X-ray bursts and superbursts / First year of MAXI

X-ray bursts and superbursts a brief review

Talk outline

- Past: Discovery, nature
- **Recent:** Superbursts, intermediate-duration bursts
- Future: with current & future instrumentation

Brief history: the 'first' X-ray burst (in hindsight)

- Detected in <u>1969</u> with Vela 5b
- Published by Belian et al. (<u>1972</u>)
- First cited in <u>1976</u>
- Still the brightest X-ray burst ever: 1.4 x 10⁻⁶ erg s⁻¹ cm⁻² (50 x Crab !).
 Bright enough to disturb earth's ionosphere.
- Re-investigated by Kuulkers et al. (2009).
 Happened few days prior to accretion outburst

Brief history: the discovery X-ray burst

- Detected in 1975 with first pointed X-ray satellite ANS (Grindlay & Heise 1975)
- Prompted a spur of subsequent burst discoveries, particularly with SAS-C (Lewin, Hoffman et al.)
- Explained as thermonuclear shell flash on NS by Maraschi & Cavaliere (1977), Woosley & Taam (1977), based on theoretical work by Hansen & van Horn (1975)

Grindlay & Heise, IAUC, dec 1975 Grindlay et al., ApJ, 1976

Fuel accumulation and ignition

- Local accretion rate in low-B NSs is 10 to $10^5 \text{ gr s}^{-1} \text{ cm}^{-2}$
- For M-dot>10% Edd, H burns through hot CNO cycle, producing pure He layer
- After hours to days, accumulate columns of $y=10^{6-8}$ gr cm⁻² (cf, 10³ for earth atmosphere) or 10²¹ g
- Pressure (y*g) builds up to ignition condition for explosive triple-alpha, CNO cycle and rpcapture processes, 1 m deep
- heating (:) T^{17,} cooling (:) T⁴
 → thermonuclear shell flash
- Layer heats up to 10⁹ K within milliseconds and then cools radiatively over tens of

seconds→ X-ray burst

Isotope production during X-ray burst (Schatz 2003)

X-ray bursts and superbursts / First year of MAXI 10

RON

Courtesy Andrew Cumming

X-ray bursts and superbursts / First year of MAXI 11

Burning regimes

Regime	$\dot{M}/\dot{M}_{\rm Edd}$	Burning
Ι		Mixed H/He flash (H ignites first)
	0.5%	
II		He flash (stable H burning)
	3%	
III		Mixed H/He flash (He ignites first)
	100%	
IV		Stable H/He burning

Basic understanding of Type I bursts

a relaxation oscillator: accumulation of fuel followed by rapid burning

Courtesy Andrew Cumming

SRON

Spectra → pure black body

Strohmayer & Bildsten 2006

SRON

Strohmayer & Brown 2002

A special burning regime

 Hydrogen-poor accretion from white dwarf donors in ultra-compact X-ray binaries (P_{orb} < 80 min)

SRON

Eddington-limited bursts

- Faster burning and thicker piles result in higher nuclear energy rate→ larger L → may reach Eddington limit and drive photosphere to heights
- Eddington → L plateaus & R increases → kT decreases → PRE/Eddington-limited bursts
- 20% of all bursts are Eddington-limited (Galloway et al. 2008)

Basic inferences from burst flux profile

- Fluence \rightarrow amount of fuel
- Decay time \rightarrow thickness of fuel layer
- Peak luminosity → amount of fuel X production rate of nuclear energy (or, type of nuclear process)
- PRE + peak flux \rightarrow distance (d= $\sqrt{L_{edd}}/4\pi F_{peak}$)
- Flux + distance \rightarrow radius (r=d $\sqrt{F/\sigma T^4}$ = Stefan Boltzmann)

Why are X-ray bursts so fascinating?

- Exhibition of nuclear reactions seen nowhere else
- Cleanest probe of the densest matter (→ QCD) in the visible universe
- Probe of General Relativity in the strong field regime

NS structure

- 5 distinct regions
- Inner core content uncertain; $\rho \sim 10-20 \rho_0$
- 3 possible phases with increasing compressibility:
 - normal matter
 - Bose condensate
 - Deconfined quarks
- constitution dictates mass M and radius R → constrain M and R and find out what NSs are made of and how matter behaves at supranuclear densities

Figure from Dany Page

EOSs

Demorest et al. 2010

Masses are 'easy', radii not..

X-ray bursts may be useful, for instance:

- Continuum spectra
 - Stefan-Boltzmann for black body L=4 π R² σT^4
 - inaccurate: not exactly black body, non-isotropies
- High(er) resolution spectra
 - gravitational redshift

$$R = R_{\infty}(1+z)^{-1},$$

$$M = \frac{c^2}{2G}R_{\infty}(1+z)^{-1}[1-(1+z)^{-2}].$$

EOSs

Demorest et al. 2010

Burst durations

Superburst - discovery

Superburst – time profiles

Superburst - precursors

Strohmayer & Bildsten 2006

In 't Zand et al. 2003

In 't Zand, Cornelisse & Cumming 2004

Superburst – normal burst quenching

X-ray bursts and superbursts / First year of MAXI 27

Superburst population

- 18 superbursts (8 ASM, 8 WFC, 2 PCA, 1 HETE) from 10 superbursters
- All superbursters are normal bursters as well, except for weeks to months after superburst (~10% of total burster population; ~25% of likely superbursters)
- 3 recurrent superbursters (few months & few years recurrence time)

Object	Instr.	P _{orb} (min)	# SB	Accretion level (fraction of Eddington)	Dur. (hr)	Peak lum. (10 ³⁸ erg/s)	Reference SB discovery
4U 0614+091	ASM 05	50?	1	0.01	>1.5	>0.1	Kuu05
4U 1254-69	WFC 99	236	1	0.13	14	0.4	Zand03
4U 1608-522	ASM+HETE 05	773?	1	0.03 (trans)	~15	0.5	Rem05
4U 1636-536	ASM 96/97/98/01	228	3	0.1	6	1.3	Stroh02, Wij03, Kuu09
KS 1731-260	WFC 97		1	0.1 (trans.)	12	1.4	Kuu02
4U 1735-444	WFC 96	279	1	0.25	7	1.5	Cor00
GX 3+1	ASM 99		1	0.2	>3.3	0.8	Kuu02
GX 17+2	WFC 96-01	10d?	4	0.8	2	1.8	Zand04
4U 1820-303	PCA 99	11	1	0.1	>2.5	3.4	Stroh02
Ser X-1	WFC 97/ASM 99/08		1	0.2	4	1.6	Cor02, Kuu09

What are superbursts?

- Long duration → deep ignition (y=10¹² g cm⁻²) → not H or He, but Carbon flash
- Fluence value → mixed Carbon (X_C~0.1), except for superburst from 4U 1820-30 (X_C~1)

Cumming et al. 2006

Surprise: superburst from the classical transient 4U 1608-522 (Keek et al. 2008)

What is going on?

- Heating due to chemical separation at solidification into crust by boyuncy-induced mixing and heating? (Medin & Cumming 2010, Horowitz et al. 2007)
- Extra electron capture energy? (Brown)
- Additional observational constraints: accurate recurrence times to define more accurately ignition conditions

Future observations

With current instruments

- High-resolution spectroscopy with XMM-Newton and Chandra of PRE bursts
- Medium-resolution (CCD) spectroscopy with Swift of PRE bursts through automatic slewing to bursts from certain sources
- High-resolution spectroscopy with XMM-Newton and high-resolution timing with RXTE of superbursts through TOO programs using triggers from RXTE, INTEGRAL and Swift
- Comprehensive observations on the brightest burster Cen X-4 when it goes in outburst again (100 times as bright as EXO bursts)
- Wide-field monitoring for rare long X-ray bursts from unexpected sources with MAXI

MAXI on bursts

Source

GS 1826-24

bursts up

to Nov 29

34

- shows many spikes in orbital data
- X-ray bursts?
- better judgment possible with second-resolution light curves. Not public (yet?)

MAXI on superbursts

- no obvious superbursts yet, let alone with 1 s rises (definitive id)
- net exposure time per source is ~200 ks
- low cycle does not matter for superbursts!

Superburster	MAXI Observation length (years)
4U 0614+091	0.61
4U 1254-69	0.80
4U 1636-536	0.63
GX 3+1	0.60
Ser X-1	0.61

- Combined exposure of 10 known superbursters ~6 yr
- If average wait time is 1 yr, 0.2% probability of not detecting a superburst → any time soon now!

Future instrumentation = square meters: IXO or?..

- 'next generation RXTE': many square meters, no imaging (e.g., AXTAR, LOFT)
- 'next generation Swift': more square cm for XRT & spectroscopy, X-ray monitor (e.g., EDGE, XENIA, ORIGIN)
- 'IXO pathfinder': same square m, less spatial resolution, one detector (*GRAVITAS*)

Conclusions

- Since the launch of RXTE and BeppoSAX in 1995/6, we are seeing many new details to thermonuclear burning on NS surfaces, such as
 - intermediate duration bursts
 - superbursts
 - first indications of narrow spectral features (lines+edges)
 - burst oscillations & mHz modulations in nuclear burning (next talk)
- which (may) provide new constraints on for instance
 - unique nuclear processes
 - thermal behavior of NS crusts
 - constitution of high-density interior
- MAXI will be instrumental to nail down superburst recurrence times and in providing superburst triggers for more sensitive telescopes such as those on XMM-Newton, better than ASM

