Subaru Wide-Field Variability Survey

Tomoki Morokuma (University of Tokyo)

MAXI 1st year workshop Dec. 2, 2010

Contents

- Subaru telescope & Suprime-Cam
- Survey for AGN & Distant
 Supernova via optical
 variability
- Hyper Suprime-Cam (HSC)
 & Survey Plan
- Summary

Subaru telescope

- 8.2-m aperture
- Mt. Mauna Kea (~4,200m) in Hawaii Big Island
 - 3 other 8-m class telescopes: Gemini-N, Keckx2
- optical-infrared telescope
- operated by National Astronomical Observatory of Japan (NAOJ)
- multi-purpose: 10 instrumentsfirst light: 1999

Subaru telescope

Suprime-Cam

- ø prime-focus optical imager: 3600-10000A
- based on development experience of mosaic CCD wide-field imagers at Kiso
- much widest field-of-view among 8-m class telescopes:
 34`x27' ~ full moon
- IO Hamamatsu CCDs (upgraded August 2008)
 - QE improvement around ~1um
- most popular instrument: ~20% share

Suprime-Cam

much widest field-of-view among current 8-m class/ space telescopes: 34'x27' ~ full moon

~1,000,000 objects

Suprime-Cam

- ø prime-focus optical imager: 3600-10000A
- based on development experience of mosaic CCD wide-field imagers at Kiso
- much widest field-of-view among 8-m class telescopes:
 34`x27' ~ full moon
- IO Hamamatsu CCDs (upgraded August 2008)
 - QE improvement around ~1um
- most popular instrument: ~20% share

Variable Object Surveys w/ Subaru/Suprime-Cam

- Subaru is a multi-purpose telescope (10 instruments). Not a dedicated telescope.
- Iarge survey has not been so easy
- but we could conduct variability surveys

 Subaru Observatory Projects + Intensive Programs since 2001 + Guaranteed Time

Subaru Deep Field (SDF)

Subaru/XMM-Newton Deep Survey (SXDS)

Flux Variability Detection

reference

search

subtraction

simple photometry can NOT detect variability for extended sources such as faint AGN in bright galaxies and supernovae in extended galaxies.
← due to time-varying seeing size (groundbased observation)

Image subtraction method (Alard & Lupton 1998, Alard 2000)

Survey for Variables

- Variability Survey (TM+2008a)
- Active Galactic Nuclei (AGN)
 - Variability-Selected AGN (TM+2008b)
- Supernovae
 - Supernova Rate (Poznanski+2007)
 - Delay Time Distribution of SNe Ia in early-type galaxies (Totani, TM+2008)
 - Supernova Spectra w/ Subaru/FOCAS (TM+2010)
 - SN Ia Cosmology (Amanullah+2010)
 - Delay Time Distribution of SNe Ia (Okumura, Totani+2010, in prep.)
 - Supernova Rate (Ihara 2010 PhD thesis, Ihara+2010, in prep.)
 - SN Ia Cosmology (Suzuki+2010, in prep.)
- High Proper Motion Stars
 - High Proper Motion Stars 1 (Richmond, TM+2009)
 - High Proper Motion Stars 2 (Richmond, TM+2010)

Survey for Variables

- Variability Survey (TM+2008a)
- Active Galactic Nuclei (AGN)
 - Variability-Selected AGN (TM+2008b)
- Supernovae
 - Supernova Rate (Poznanski+2007)
 - Delay Time Distribution of SNe Ia in early-type galaxies (Totani, TM+2008)
 - Supernova Spectra w/ Subaru/FOCAS (TM+2010)
 - SN Ia Cosmology (Amanullah+2010)
 - Delay Time Distribution of SNe Ia (Okumura, Totani+2010, in prep.)
 - Supernova Rate (Ihara 2010 PhD thesis, Ihara+2010, in prep.)
 - SN Ia Cosmology (Suzuki+2010, in prep.)
- High Proper Motion Stars
 - High Proper Motion Stars 1 (Richmond, TM+2009)
 - High Proper Motion Stars 2 (Richmond, TM+2010)

Subaru/XMM-Newton Deep Survey (SXDS)

X-ray (XMM-Newton/EPIC, 50-100ks, Ueda+2009) Ie-15 erg s⁻¹ cm⁻² @0.5-2.0keV 1.5 deq 3e-15 erg s⁻¹ cm⁻² @2.0-10.0keV mid-infrared (Spitzer/IRAC): 3.6µm-band ~ 22.0mag spectroscopic follow-ups with many 8m-class telescopes optical (Subaru/Suprime-Cam, Furusawa+2008) B(28.2mag),V(27.2mag),R(27.6mag), i(27.5mag),z(26.5mag) optical variability (Subaru/Suprime-Cam,TM+2008a,b) multi-epoch 8-10 times during 2002~2005 Timescale: 1 day - 3 years ⊘ i_{AB,vari}~25.5mag (flux of variable components = flux difference between epochs $\Delta f = |f_1 - f_2|$ 1,040 variable objects over 0.918 deg2 ~500 AGN selected by optical variability ~50 SNe Ia with good light curves

Suprime-Cam 5 fields XMM-Newton 7 pointings

(02h18m00s, -05:00:00) in J2000 (l,b)=(169°,-60°)

Supernova rates

Ihara+2010 in prep. SXDS (~1 deg2), ~50 SNe Ia by photometric typing

redshift 0 0.5 1 1.5

SN Ia Delay Time Distribution

Totani, TM+2008 SN Ia@early-type gals

Okumura+2010, in prep. SN Ia@all gals

Optical Variability of AGN

all (type-1) AGN show detectable variability in optical. (Hawkins 1993, Hook+1994, Giveon+1999, many SDSS studies ...).
fainter AGN show larger variability amplitudes.

Vanden Berk+2004

classical optical color selection does NOT suit for low-L AGN search.

Optical variability can be a good tracer for low-luminosity AGN.

- Subaru (Suprime-Cam): Totani+2005, TM+2008a,b
- HST (WFPC2, ACS): Sarajedini+2000,2003,2006, Cohen+2006
 - (low-luminosity) type-1 AGN (up to z~5)
 - ~580 AGN / deg²
 - significant fractions (~50%) of AGN w/o X-ray detections

AGN samples

properties of variability-selected AGN

differential flux between maximum and minimum low differential flux ~ low AGN flux

properties of variability-selected AGN

Images & Light Curves

What is the nature of this kind of low-luminosity AGN???

- HST imaging

 Deep spectroscopy (maybe stacking analysis necessary) to search for AGN features and also apply AGN identification diagnostics based on emission line ratios.
 environmental dependence?

Images & Light Curves

What is the nature of this kind of low-luminosity AGN???

- HST imaging

 Deep spectroscopy (maybe stacking analysis necessary) to search for AGN features and also apply AGN identification diagnostics based on emission line ratios.
 environmental dependence?

Hyper Suprime-Cam (HSC)

Hyper Suprime-Cam

34 arcmin

27 arcmin Suprime-Cam

Hyper Suprime-Cam

1.5deg

Hyper Suprime-Cam

Ircn

27 arcmin Suprime-Cam

LSST

Hyper Suprime-Cam

1.5deg

3.5deg

HSC specification

- field-of-view: 1.5 degree in diameter (1.77 deg2)
 - 7 times larger than Suprime-Cam (5 times smaller than LSST...)
- 600mm focal plane
 - I16 CCDs (incl. 4 auto-guider, 8 auto-focus)
 - I gigapixel
- O.17 arcsec/pixel (typical seeing @ MK ~0.7 arcsec)
- high QE CCDs (Hamamatsu)
- readout ~20sec
- 6 broad-band filters (ugrizy) + several narrow-band filters
- seeing-limited image quality
- first light: 2011 fall
- ø data access?

Hyper Suprime-Cam (HSC)

real size HSC w/ HSC members Hyper Suprime-Cam (HSC)

open campus 2009

Hyper Suprime-Cam (HSC)

PFU for HSC

Jack Top Frame

WFC

Dewar Assembly

HSC Strategic Observations

- "Legacy" survey
- spend ~300 nights over ~5 years (maximum)
 - can not be achieved by individual proposals
- We will start HSC strategic observation in 2012 summer.
- Japan-Taiwan-Princeton collaboration
 - 3 layers: wide/deep/ultradeep
 - weak lensing, galaxy evolution, SN Ia cosmology, high-z (z>6.5) quasars
 - cadence is very important for "us"

HSC Strategic Survey: 3 layers

layer	wide	deep	ultradeep	
# of nights	200	50	50	
area [deg2] (HSC FoVs)	1300 (734)	28 (16=4x4)	3.5 (2)	
filters	grizy	(u)grizy+3NBs	(u)grizy+6NBs	
t_exp [min]	10-20	120-180	540-1620	
science	weak lensing, galaxy cluster, quasars,	high-z galaxy, SNe, quasars, GRBs,	high-z galaxy, SNe, GRBs, AGN,	

all the numbers are tentative.

HSC Strategic Observation (tentative)

	u	g	r	i	Z	У	NBs	area
wide		10	10	20	20	20	-	1300
		(26.2)	(25.9)	(26.2)	(25.0)	(24.0)		
deep		120	180	180	120	120	3	28
		(27.7)	(27.6)	(27.2)	(25.9)	(24.7)		
ultradeep	-	540	540	1080	1620	1620	6	3.5
		(28.5)	(28.2)	(28.2)	(27.3)	(26.1)		

• wide: weak lensing, galaxy clusters, high-z quasars, ...

- take all the data during one lunar phase (around new moon)
- examine variability within a day
- deep: high-z galaxy, supernovae, quasars, GRBs, ...
- ~10 epochs over 3 years

• ultradeep: high-z galaxy, supernovae, GRBs, AGN, ...

- ~20 epochs over 5 years

exposure time in minute
area in deg2
limiting magnitude
measured within 2 arcsec
aperture, 5 sigmas

HSC Science: Transients

time scale: an hour - years

Supernova

- type Ia: cosmology, rate, host galaxy, progenitor
- core-collapse: rate, host galaxy, progenitor(@preimage)

GRB

- optical orphan afterglow: mechanism
- ToO follow-up(?)

AGN

- Iow-L quasar (M1450~-23mag)@z>3: LF, evolution
- Iow-L AGN@z<1: environmental effect</p>
- High Proper Motion Stars
- Solay system bodies

Summary

- Subaru/Suprime-Cam variability survey found ~1,000 variable objects over ~1 deg2 (i<26mag).</p>
- SN Ia at z>1. Rate is increasing. Higher-redshift?
- Among the AGN sample (~500 objects), a significant fraction of AGN are not detected in deep X-ray data (XMM-Newton).
- They are low-L AGN without X-ray detection (<10⁻¹⁵ erg/s/cm2) at z^{0.5}. LINER analogous?
- Subaru/HSC will be completed and get its first light on 2011 fall.
- HSC Strategic Survey will start on 2012 summer and spend ~300 nights over 5 years (3 layers: wide/deep/ ultradeep).
- Many science including SN, GRB, and AGN will be intensively done using Subaru/HSC.

~ End ~

Thank you !!!

