A giant flare from a weak-lined T Tauri Star TWA–7 detected with MAXI/GSC

1 Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
2 Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5558, Japan
3 School of Dentistry at Matsudo, Nihon University, Chiba 252-5258, Japan
4 MAXI team, JAXA, Ibaraki 305-8505, Japan
5 MAXI team, RIKEN, Saitama 351-0198, Japan
6 Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
7 Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan
8 Department of Physics, Nihon University, Tokyo 101-8308, Japan
9 Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan
10 MAXI team, JAXA, Kanagawa 252-5210, Japan
11 Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192, Japan
12 School of Physical Science, Space and Astronautical Science, Sokendai, Kanagawa 252-5210, Japan
E-mail(AU): akiko@phys.chuo-u.ac.jp

ABSTRACT

We present a gigantic X-ray flare from TWA-7 detected with the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) on the International Space Station. The flare was observed on 2010 September 7th at the scan transit starting at UT 2010-09-07 18:24:30, and the flux decayed with an e-folding time of \(\tau \approx 2 \) hours. At the flux maximum, X-ray luminosity reached \(1 \times 10^{33} \) ergs s\(^{-1}\), which ranks the brightest level for flares in T Tauri stars. Since MAXI/GSC can monitor a target only once (\(1 \) min) per 92 min orbit, the real X-ray peak might be missed. In that case, the X-ray luminosity we obtained gives only the lower limit as the flare peak. Since TWA-7 has neither accreting disk nor binary companion, TWA-7 is an example to indicate that neither accretion nor binarity might be essential to originate gigantic flares.

Key words: stars: flare — stars: individual(1RXS J104230.3-334014, TWA–7) — stars: late-type —stars: pre-main-sequence — X-rays: stars

1. Introduction

TWA-7 (2MASS J10423011-3340162, TWA 7A) is a weak-lined T Tauri star identified as part of the TW Hydrae Association (TWA; Kastner et al. 1997) by Webb et al. (1999) based on the proper-motion studies in conjunction with youth indicators such as high lithium abundance, X-ray activity, and evidence of strong chromospheric activity. Based on the width of the Li 6707 line, Neuhauser et al. (2000) deduced that TWA-7 is a pre-main-sequence star. TWA-7 was not detected by Hipparcos, but its membership in the TWA sets its distance to be 55±16 pc (Neuhäuser et al. 2000; Weinberger et al. 2004; Low et al. 2005). Its spectral type is M1 based on LRIS (Low Resolution Imaging Spectrograph) spectra (Webb et al. 1999). Based on existing photometry, evolutionary tracks, and isochrone fitting, Neuhauser et al. (2000) derived an age of 1–6 Myr and a mass of 0.55±0.15 M\(_\odot\), although the age of the association is generally taken to be 8–10 Myr (Stauffer et al. 1995; Zuckerman & Song 2004) assuming that planet formation is ongoing and disk dissipation is occurring.

TWA 7 has infrared (IR) excess emission which indi-
Table 1. General properties of TWA-7

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Type</td>
<td>M2 Ve</td>
<td>Torres et al. 2006</td>
</tr>
<tr>
<td>Age (Myr)</td>
<td>8</td>
<td>Matthews et al. 2007</td>
</tr>
<tr>
<td>P_{rot} (days)</td>
<td>5.05</td>
<td>Lawson & Crause 2005</td>
</tr>
<tr>
<td>$v^|$ (km s$^{-1}$)</td>
<td>19.2</td>
<td>Yang et al. 2008</td>
</tr>
<tr>
<td>i (degree)</td>
<td>28</td>
<td>Yang et al. 2008</td>
</tr>
<tr>
<td>M (M$_\odot$)</td>
<td>0.92</td>
<td>Yang et al. 2008</td>
</tr>
<tr>
<td>R (R$_\odot$)</td>
<td>1.89</td>
<td>Yang et al. 2008</td>
</tr>
<tr>
<td>Distance (pc)</td>
<td>55</td>
<td>Low et al. 2005</td>
</tr>
</tbody>
</table>

†: Rotation velocity is derived from inclination angle and $v \sin i$.

Fig. 1. This figure shows position err of a short X-ray transient at the position of (R.A., Dec) = (+160.86 deg, -33.68 deg)(J2000). A rectangular error box with the following corners: (R.A., Dec) = (+161.09deg, -34.13 deg), (+160.23deg, -33.68 deg), (+160.63deg, -33.23 deg), (+161.49deg, -33.68 deg)(J2000). This error box indicates statistical error with 90 percent confidence level, and there is additional systematic uncertainty of 0.2' (90% containment radius). Only one X-ray source is present in the ROSAT bright catalog in this error region with a separation of about 0.2' from the best-fit position. The source is a T Tauri star TWA-7.

cates the presence of a disk. The first notation was made in submillimeter observations by Webb (2000), and then successive IR detections have been reported by Low et al. (2005) and Matthews et al. (2007). Using SCUBA on the JCMT, Matthews derived the mass of the debris disk to be 18 M_{lunar}, assuming a mass opacity of 1.7 cm2 g$^{-1}$ with a temperature of 45 K. Neuhäuser et al. (2000) detected a possible planetary companion to TWA-7 through the accordance with Webb et al. (1999) and Neuhäuser et al. (2000). XMM-Newton detected TWA-7 through the ROSAT All-Sky Bright Source Catalogue. The X-ray luminosity is about 1×10^{30} ergs cm$^{-2}$ s$^{-1}$ in ROSAT band in accordance with Webb et al. (1999) and Neuhäuser et al. (2000). XMM-Newton detected TWA-7 through the XMM-Newton Slew Survey in 2010 January, and derived flux of 6×10^{-12} ergs cm$^{-2}$ s$^{-1}$ in 0.2-12 keV band, which corresponds to 2×10^{30} ergs s$^{-1}$ in the same band. This is not inconsistent with that derived with RASS.

X-rays from TWA-7 was discovered with the ROSAT all-sky survey in 1996 June (RASS; Voges et al. 1999), and TWA-7 is named as 1RXS J104230.3-334014 in the ROSAT All-Sky Bright Source Catalogue. From TWA-7, we detected a gigantic X-ray flare on 2010 September 7th, through the X-ray monitoring observation with MAXI/GSC. The maximum X-ray luminosity is nearly three orders of magnitude higher than the previously observed ones, and ranks the brightest level for flares in T Tauri stars.

2. Observations and Results

The MAXI carries two scientific instruments: the Gas Slit Camera (GSC) (Nakahira et al. 2009) and the Solid State Camera (SSC) (Tomida et al. 2010). The GSC consists of twelve one-dimensional position-sensitive proportional counters operated in the 2–20 keV range, while the SSC is composed of 32 X-ray CCD cameras with an energy range of 0.5–12 keV. The GSC observes two different directions (horizontal and zenithal direction) with an instantaneous field of view of $3^\circ\times10^\circ$ each covered by six cameras. It covers 70 percent of the whole sky in every orbit, while ISS orbits the earth 16 times per day. Both instruments have been working properly in orbit, but at the time the gigantic flare from TWA-7 was observed (on 2010 September 7th), four out of the twelve GSC cameras were off due to discharges in the proportional counters. See Matsuoka et al. (2009) for more details of the MAXI. In this paper, we report the results with only the GSC, which offer larger effective area than those of the SSC.

The GSC detected a short transient X-ray emission at the position of (R.A., Dec) = (+160.86 deg, -33.68 deg) = (10 43 27, -33 40 53) (J2000) at the scan transit starting at UT 2010-09-07 18:22:45. Figure 1 shows the error region (90% confidence level) which is a summation of our derived statistical error box and a systematic uncertainty of 0.2". In the error region, only TWA-7 exists as a source in ROSAT bright source catalog, with a separation of about 0.2" from the best-fit position (see Figure 1).

The source was not detected at this location in the previous scanning (92 min before the detection) at more than a 3-σ level. Figure 2 shows the contour maps with a
radius of 10° centered on TWA-7 in the 2–20 keV band, showing pre-flare phase (Phase 0), the flare phase (Phase 1), and the flare-decay phase (Phase 2). At the scan of Phase 1, X-ray emission from TWA-7 appeared suddenly with source significance of 14σ, and at the Phase 2, it has been already decayed to 4-σ level.

Figure 3 shows the background-subtracted X-ray light curve in 2–20 keV band. The data were extracted from an ellipse with 1.8° of semi-major axis and 2.5° of semi-minor axis, centered on TWA-7. This region was selected to maximize S/N ratio. The background region is made from a 10° radius circle centered on TWA-7, removing the source regions. We fitted the light curve with a burst model (BURS model in QDP; linear rise followed by an exponential decay). The upper limit of the linear rising time is derived as 1.6 hours from the time-span between Phase 0 and 1, and the e-folding time for decay phase (Phase 1 and 2) is obtained to be ≤2.1 hours (90% confidence range) by fitting. These values are not inconsistent with the stellar flares reported in the literatures.

Figure 4 shows the background-subtracted X-ray spectrum at the flare phase (Phase 1). The source region and the background region are common to those for light curve. We fitted the spectrum with an optically-thin thermal plasma model (APEC model in XSPEC; Smith et al. 2001) in which all the metal abundances were fixed at 0.3 of solar values, which is generally obtained in various star forming region. Since the interstellar absorption toward TWA-7 is negligible, we fixed the absorbing columns to be 0. The best-fit values are summarized in Table 2, while the best-fit model is shown as a solid line in Figure 4. The derived emission measure is extremely large, 9.6 (2.5–18) × 10^{55} cm^{-3}, and then X-ray luminosity is 1.2 (0.8–1.5) × 10^{33} ergs s^{-1} (errors are 90% confidence range). We further tried a fitting with a power-law model, and obtain the best-fit values showing in Table 3. These results indicate that this flare is one of the brightest flares in those of T Tauri stars.

![Fig. 2. Time-partitioned MAXI/GSC images around TWA-7 with a radius of 10°. The images were smoothed with a Gaussian distribution of σ=0.65°. Left panel: Phase0; middle panel: Phase1; right panel:Phase2. The contour levels, in unit of counts pixel^{-1}, are: 0.040, 0.055, 0.070, 0.085, 0.100, for all figures. The diamonds show the position of TWA(Webb et al. 1999;Sterzik et al. 1999;Mamajek & Feigelson 2001;Lawson & Crause 2005;Reid 2003;Song et al. 2003;Mamajek 2005). The sky coordinates are J2000.0.](image1)

![Fig. 3. MAXI/GSC light curve of TWA-7 in the 2-20 keV band. The solid line shows the best-fit model(BURS). For the analysis of the flare the observations are divided into 3 parts as indicated in the figure. Phase0:2010-9-7 (UT)16:51:01-16:56:36. Phase1:2010-9-7 (UT)18:22:45-18:28:04. Phase2:2010-9-7 (UT)19:55:32-19:59:48.](image2)
3. Discussion

The flare we detected from TWA-7 is among the brightest in those from T Tauri stars. Similar level of flare has been detected on a weak-lined T Tauri star, V773 Tau (Tsuboi et al. 1998). This source is a binary star, while TWA-7 is a single star. So, binary might be not the essential factor to originate strong flares.

TWA-7 has debris disks. We calculated several parameter of the flare (see Table 4), and we obtain the volume of the flare plasma $V \leq 4.0 \times 10^{13}$ cm3. If the volume is in the shape of a loop similar to solar loops (i.e., aspect ratio $a \equiv$ loop length/loop diameter $= 0.1$; van den Oord et al. 1988) and the loop cross section is constant, then the loop size is $\leq 8.0 \times 10^{11}$ cm (≤ 0.053 AU). Low et al. (2005) determine that the dust orbiting TWA-7 exists at radii ≥ 7 AU from the star and has a temperature of 80 K. Later, Matthews et al. (2007) determine that dust radius 100 AU and has a temperature of 21–65 K. It is impossible to connect the magnetic reconnection between the star and debris disks, because of debris disks are too far from the star.

4. Summary

We have analyzed MAXI/GSC observations of an intense X-ray flare detected in the weak line T Tauri star TWA-7. Our analysis of the GSC images, light curves, and X-ray spectra and a comparison with V773 Tau can be summarized as follows:

1. We detected an X-ray flare from TWA-7 for the first time.
2. The peak luminosity reached $\sim 10^{33}$ ergs s$^{-1}$. Therefore, a gigantic flare occurs not only a binary star.
Table 2. Best fit parameters in the fitting with a thin thermal plasma model (apec). Error range refer to 90 % confidence intervals.

<table>
<thead>
<tr>
<th>N_H</th>
<th>kT</th>
<th>Z</th>
<th>$\int n_e n_H dV$</th>
<th>Flux†</th>
<th>L_X^\ddagger</th>
<th>χ^2 (d.o.f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1022 cm$^{-2}$)</td>
<td>(keV)</td>
<td>(solar abundance)</td>
<td>(1055 cm$^{-3}$)</td>
<td>(10$^{-9}$ ergs cm$^{-2}$ s$^{-1}$)</td>
<td>(1033 ergs s$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>0 (fixed)</td>
<td>6.3</td>
<td>0.3 (fixed)</td>
<td>9.6</td>
<td>3.2</td>
<td>1.2</td>
<td>0.16 (3)</td>
</tr>
<tr>
<td>(2.5–27)</td>
<td>(5.8–18)</td>
<td>(2.3–4.2)</td>
<td>(0.8–1.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\dagger: Flux in 2-20 keV band, the best-fit parameter kT is fixed and the error is obtained.

\ddagger: L_X in 2-20 keV, the value is obtained the best-fit parameter Flux. Distance in Table 1 is used.

Table 3. Best fit parameters in the fitting with an absorbed power law model (wabs*powerlaw). Error range refer to 90 % confidence intervals

<table>
<thead>
<tr>
<th>N_H</th>
<th>Γ</th>
<th>Flux†</th>
<th>L_X^\ddagger</th>
<th>χ^2 (d.o.f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1022 cm$^{-2}$)</td>
<td></td>
<td>(10$^{-9}$ ergs cm$^{-2}$ s$^{-1}$)</td>
<td>(1033 ergs s$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>0 (fixed)</td>
<td>2.1</td>
<td>3.6</td>
<td>1.3</td>
<td>0.28 (3)</td>
</tr>
<tr>
<td>(1.5–3.0)</td>
<td>(2.5–4.6)</td>
<td>(0.9–1.7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\dagger: Flux in 2-20 keV band, the best-fit parameter Γ is fixed and the error is obtained.

\ddagger: L_X in 2-20 keV band, the value is obtained the best-fit parameter Flux. Distance in Table 1 is used.

Table 4. Parameters derived for flares

<table>
<thead>
<tr>
<th>τ_d</th>
<th>τ_r</th>
<th>T_{max}</th>
<th>n_e</th>
<th>p</th>
<th>ρ</th>
<th>V</th>
<th>L</th>
<th>B</th>
<th>E_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ks)</td>
<td>(ks)</td>
<td>(104 K)</td>
<td>(101 cm$^{-3}$)</td>
<td>(104 dyne cm$^{-2}$)</td>
<td>(103 cm3)</td>
<td>(1011 cm)</td>
<td>(Gauss)</td>
<td>(1037 ergs)</td>
<td></td>
</tr>
<tr>
<td>\leq7.6</td>
<td>\leq5.8</td>
<td>2.0</td>
<td>\geq1.2</td>
<td>\geq2.3</td>
<td>\leq4.0</td>
<td>\leq8.0</td>
<td>\geq760</td>
<td>\leq1.2</td>
<td></td>
</tr>
<tr>
<td>(0.7–11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1)τ_d is flare e-folding time.
(2)τ_r is flare linear rising time.
(3)T_{max} is the temperature at the flare peak. (see equation (1))
(4)n_e is the electron density in the loop at the flare peak. (see equation (2))
(5)p is the maximum pressure in the loop at the flare peak. (see equation (3))
(6)V is volume of flaring plasma. (see equation (4))
(7)L is length of flaring loop. (see equation (5))
(8)B is minimum magnetic field necessary for confinement. (see equation (6))
(9)E_{tot} is total X-ray energy emitted during the flare. (see equation (7))

\[
T_{obs} = 1.16 \times 10^7 kT
\]
\[
T_{max} = 0.137 \tau_d^{1.16}
\]
\[
n_e = 4.4 \times 10^{10} \text{ cm}^{-3} (\tau_d/10 \text{ ks})^{-1} \times (kT/\text{keV})^{3/4}, \text{ for } kT > 2 \text{ keV}
\]
\[
p = 2n_e kT_{max}
\]
\[
V = EM/n_e^2
\]
\[
L = (400V/\pi)^{1/3}
\]
\[
B = \sqrt{8\rho}
\]
\[
E_{tot} = L \times \tau_d
\]

Equation (2) is quoted from van den Oord & Mewe(1989), (5) is quoted van den Oord et al. (1988), and others quoted from Pandey & Singh(2008).
References
Kastner et al. 1997 Science, 277, 67
Lawson & Crause 2005 MNRAS, 357, 1399
Mamajek & Feigelson 2001 Young Stars Near Earth: Progress and Prospects, 244, 104
Matsuoka et al. 2009 PASJ, 61, 999
van den Oord et al. 1988 A&A, 205, 181
van den Oord & Mewe 1989 A&A, 213, 245
Pandey & Singh 2008 MNRAS, 387, 1627
Reid 2003 MNRAS, 342, 837
Shibata & Yokoyama 1999 ApJL, 526, L49
Shimizu 1995 PASJ, 47, 251
Smith et al. 2001 ApJL, 556, L91
Sterzik et al. 1999 A&A, 346, L41
Torres et al. 2006 A&A, 460, 695
Webb et al. 1999 ApJL, 512, L63
Yang et al. 2008 AJ, 136, 2286
Zuckerman & Song 2004 ARA&A, 42, 685