X-ray spectral variability in the ultraluminous X-ray source
Holmberg IX X-1

K. Vierdayanti1,2, C. Done3, T. P. Roberts3 and S. Mineshige2

1 Department of Astronomy, Institut Teknologi Bandung
2 Kyoto University
3 University of Durham

E-mail(VK): kiki@as.itb.ac.id

ABSTRACT

We present our recent study on ultraluminous X-ray source (ULXs), Holmberg IX X-1, published in the Monthly Notices. We use XMM-Newton and Swift data to study a spectral variability in ULX Holmberg IX X-1. The source luminosity varies by a factor of 3-4, giving rise to corresponding spectral changes which are significant, but subtle, and not well tracked by a simple hardness ratio. Instead, we co-add the Swift data in intensity bins and do full spectral fitting with disc plus thermal Comptonization models. All the data are well fitted by a low temperature, optically thick Comptonizing corona, and the variability can be roughly characterized by decreasing temperature and increasing optical depth as the source becomes brighter, as expected if the corona is becoming progressively mass loaded by material blown off the super-Eddington inner disc. This variability behaviour is seen in other ULX which has similar spectra, but is opposite to the trend seen in the ULX with much softer spectra. This supports the idea that there are two distinct physical regimes in ULXs, where the spectra go from being dominated by a disc-corona to being dominated by a wind.