Hitomi Results of NGC 1275: The Origin of Fe-Kα Line

Hirofumi Noda1, Yasushi Fukazawa2, Koichi Hagino3, Masanori Ohno2, Masahiro Tsujimoto3, Takaaki Tanaka4, Hiroyuki Uchida4, Taiki Kawamuro4, Francesco Tombesi5,6, Scott Porter6, Caroline Kilbourne6, Laura Brenneman7, Christopher Reynolds5, Richard Mushotzky5, and the Hitomi collaboration

1Tohoku University (Japan), 2Hiroshima University (Japan), 3ISAS/JAXA (Japan), 4Kyoto University (Japan), 5University of Maryland (USA), 6NASA/GSFC (USA), 7Smithsonian Astrophysical Observatory (USA)
E-mail (HN): hirofumi.noda@astr.tohoku.ac.jp

ABSTRACT

A bright Fanaroff-Riley I type radio galaxy NGC 1275 dominates the center of the Perseus cluster of galaxies at a redshift of \(z \approx 0.01756 \) (Strauss et al. 1992, ApJS, 83, 29), and its radio lobes formed by the past jet activity were found to cause kpc-scale cavities in the intracluster medium (ICM) by Chandra and XMM-Newton observations (e.g., Fabian et al. 2006, MNRAS, 451, 3061). Hence, NGC 1275 is regarded as a promising candidate to study important topics such as the cooling flow (e.g., Fabian 1994, ARA&A, 32, 277) and interactions among the Active Galactic Nucleus (AGN), ICM, and galaxies (e.g., McNamara & Nulsen 2007 ARA&A, 45, 117).

During 2016 February–March, the Hitomi satellite (Takahashi et al. 2016, Proc. SPIE, 9905, 99050U) observed the Perseus cluster including NGC 1275 with an X-ray microcalorimeter called the Soft X-ray Spectrometer (SXS; Kelley et al. 2016, Proc. SPIE, 9905, 99050V) for the first time (The Hitomi collaboration, 2016, Nature, 535, 117). In the present study, we analyze the Hitomi datasets and archival datasets of other X-ray satellites, mainly aiming to reveal X-ray generation mechanism and the structure of the AGN region in NGC 1275. One of the most important mysteries is the origin of the Fe-Kα emission line at 6.4 keV (Churazov et al. 2003, ApJ, 590, 225; Yamazaki et al. 2013, PASJ, 65, 30). Possible sites of origin include an outer region of an accretion disk, a Broad Line Region (BLR), a dusty torus, and a rotating molecular disk toward outside within the AGN system. In addition, NGC 1275 was reported to have a few tens kpc-scale molecular clouds and H\(\alpha \) filaments outside the AGN (e.g., Salomé et al. 2006, A&A, 454, 437), and hence, they are also candidates of the Fe-Kα emitter.

By utilizing the unprecedented energy resolution of \(\sim 5 \) eV at 6 keV achieved by the SXS, we significantly detect the Fe-Kα line with an equivalent width of \(\sim 10 \) eV against a total X-ray continuum from the AGN and ICM (\(\sim 25 \) eV against only the AGN continuum). We successfully limit its velocity width to \(\sim 500-1400 \) km s\(^{-1}\) (FWHM) for the first time ever. Because the derived Fe-Kα velocity width is significantly narrower than that of broad H\(\alpha \) of \(\sim 2750 \) km s\(^{-1}\) (Ho et al. 1997, ApJS, 112, 391), we can exclude a large contribution of Fe-Kα emission from an the accretion disk and the BLR. Furthermore, we perform Monte Carlo simulations which calculate the Fe-Kα intensity from the molecular clouds by utilizing the MONACO framework (Odaka et al. 2011, ApJ, 740, 103), and find that their contribution is also too small. Therefore, we suggest that the origin of the Fe-Kα line from NGC 1275 is likely from the dusty torus to the rotating molecular disk which extends to a few hundred pc scale (e.g., Scharwächter et al. 2013, MNRAS, 429, 2315). Further limitation of the Fe-Kα source in NGC 1275 and comparison with other type AGNs will be discussed in a forthcoming paper.

KEY WORDS: galaxies: active – galaxies: nuclei – galaxies individual (NGC 1275)